September 2 – 6, 2019

The new operational Slow POsitron faciliTy in Israel: SPOT-IL

<u>P. Or</u>¹, S. May-Tal Beck^{2*}, D. Cohen³, E. Cohen¹, O. Hen⁴, E. Piasetzky³, I. Sabo-Napadensky⁵, O. Presler², R. Krause-Rehberg⁶, F. Deininger⁶, W. Anwand⁷, A. Wagner⁷, H. Steinberg¹, G. Ron¹

¹Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
²NRCN, P.O.Box 9001, Beer-Sheva, 84190 Israel
³School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, 69978 Israel
⁴Massachusetts Institute of Technology, Cambridge, MA 02139, USA

⁵Soreq NRC, Yavne, Israel 81800

⁶ Institute of Physics, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany

⁷Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany

The Slow POsitron faciliTy in Israel (SPOT-IL), located at the Hebrew University of Jerusalem, is now operational. The SPOT-IL beam follows a traditional design [1], using a 22 Na source, ~40mCi [2]. A tungsten foil moderator was annealed prior to its mounting on the source capsule. A compact new design of the source shielding allowed convenient positioning of the source onto the moderator. A grounded target cell allows sample changing without breaking the beam-line vacuum and is designed to allow a combined measurement of sample conductivity and Doppler Broadening (DB), with the flexibility to add more detection options in the future, such as low temperature for integrated in-situ electronic measurements. The detection system is comprised of HPGe and BaF₂ detectors, facing each other, for low background DB measurements.

The successful operation of the beam was proven by a controlled positron beam spot seen on an MCP phosphor screen, located at the beam-dump position, and by the detection of the 511keV annihilation peak when a Perspex sample was positioned in the beam in front of the detectors.

Figure 1 A model section view of SPOT-IL. (a) The target cell. (b) A γ spectrum (HPGe), with a peak of 8000 counts at 511 keV (c) Section view of the source shielding with the pre-accelerator.

References

[1] W. Anwand, G. Brauer, M. Butterling, A. Kissener and A. Wagner. *Defects and diffusion forum* **331**, 25 (2012).

[2] iThemba Laboratory for Accelerator Based Sciences, <u>http://tlabs.ac.za/?page_id=282</u> *Corresponding author, Email: smtbeck@gmail.com